Rasterio: access to geospatial raster data

Geographic information systems use GeoTIFF and other formats to organize and store gridded raster datasets such as satellite imagery and terrain models. Rasterio reads and writes these formats and provides a Python API based on Numpy N-dimensional arrays and GeoJSON.

Here’s an example program that extracts the GeoJSON shapes of a raster’s valid data footprint.

import rasterio
import rasterio.features
import rasterio.warp

with rasterio.open('example.tif') as dataset:

    # Read the dataset's valid data mask as a ndarray.
    mask = dataset.dataset_mask()

    # Extract feature shapes and values from the array.
    for geom, val in rasterio.features.shapes(
            mask, transform=dataset.transform):

        # Transform shapes from the dataset's own coordinate
        # reference system to CRS84 (EPSG:4326).
        geom = rasterio.warp.transform_geom(
            dataset.crs, 'EPSG:4326', geom, precision=6)

        # Print GeoJSON shapes to stdout.
        print(geom)

The output of the program:

{'type': 'Polygon', 'coordinates': [[(-77.730817, 25.282335), ...]]}

Rasterio supports Python versions 2.7 and 3.3 or higher.

Indices and tables